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Resumo 

Há duas operações básicas que podem ser usadas para 

ordenar um vetor: comparação e mapeamento. Entre os 

algoritmos que ordenam usando comparação, Quicksort 

é o mais rápido. Por outro lado, entre os algoritmos que 

ordenam usando mapeamento, Flashsort é um dos mais 

rápidos. Porém, Flashsort é um algoritmo híbrido, pois 

ele também usa comparação. Neste artigo, implementa-
mos um algoritmo de ordenação baseada unicamente em 

mapeamento, que denominamos Intersort, e analisamos 

empiricamente sua eficiência em relação aos outros dois 

algoritmos. Os resultados empíricos mostraram que este 

algoritmo proposto é uma alternativa bem interessante.   

1. Introdução 

Ordenação é um assunto de grande importância em 
ciência da computação, tanto teórica quanto prática. 
Formalmente, dado um vetor v  com n  itens arbitrários em 
ordem aleatória, a ordenação consiste em encontrar uma 
permutação w  de v , tal que 20 1 1nw w w w −≤ ≤ ≤ ≤⋯  [1]. 

Há duas operações básicas que podem ser usadas para 

ordenar vetores: comparação e mapeamento♣. A compa-
ração permite identificar pares de itens que estão fora de 

ordem, e trocá-los de posição, até que uma permutação 

ordenada seja obtida. O mapeamento, feito por uma 

função aplicada a um item, determina a posição em que 

este item deverá estar na permutação ordenada, sem 

precisar levar em conta os demais itens do vetor.  
Na literatura da área, há vários algoritmos de ordena-

ção que usam apenas comparação como, por exemplo, 
Bubblesort, Selectionsort, Insertionsort, Heapsort, Mer-

gesort e Quicksort [1, 2, 3]. Por outro lado, Countingsort 

é o único algoritmo de ordenação amplamente conhecido 

que usa apenas mapeamento [1]. Um resultado provado 

na literatura [1], e bem conhecido, é que a complexidade 

temporal dos algoritmos de ordenação que usam apenas 

comparação é ( lg )n nΩ , enquanto aquela dos algoritmos 

que usam apenas mapeamento é ( )nΩ . Então, claramente, 
algoritmos baseados apenas em mapeamento são ótimos. 
Porém, apesar disso, tais algoritmos têm aplicação limi-
tada, podendo ser usados somente para ordenar vetores 

de itens inteiros, escolhidos dentro de um intervalo bem 

reduzido. Por este motivo, na prática, os algoritmos que 

usam mapeamento são híbridos (i.e., usam mapeamento 

e também comparação) como, por exemplo, Radixsort, 
Bucketsort [1] e Flashsort [4]. Entre os algoritmos que 

usam apenas comparação, Quicksort é o mais rápido, 
entre aqueles que são híbridos, Flashsort é o mais rápido.  

Assim, o objetivo deste artigo é implementar o algo-
ritmo de ordenação Intersort, que usa apenas interpo-
lação linear (i.e., uma operação de mapeamento) para 
mapear os itens de v  às respectivas posições que eles 
devem ocupar em w , bem como analisar sua eficiência 
com relação aos algoritmos Quicksort e Flashsort.  

                                                           
♣ Em inglês, hashing. 

A organização do restante deste artigo é a seguinte: 
na Seção 2, mostramos como usar interpolação linear 
para criar o algoritmo Intersort; na Seção 3, apresenta-
mos as versões de Quicksort e Flashsort, usadas nos 
experimentos comparativos; na Seção 4, apresentamos a 
metodologia e os resultados empíricos; e, finalmente, na 
Seção 5, apresentamos as conclusões finais do trabalho. 

2. Ordenação por Interpolação Linear 

Interpolação linear [5] é um método numérico para 
gerar pontos num segmento de reta com extremos

 
( )0 0,x y

e ( ),m mx y . Dada a coordenada x  de um ponto nessa reta, 
sua coordenada y  pode ser geometricamente derivada, 
usando semelhança de triângulos, como mostra a Figura 1. 

 
Figura 1 – Derivação da fórmula de interpolação linear. 

2.1. Mapeamento por Interpolação 

Mapeamento [6] é uma função ( )h x  que transforma 
um item x  num índice 0 ( )h x n≤ < . Mais especificamente, 
mapeamento por interpolação, consiste em interpretar 
cada item do vetor v como uma coordenada x e usar a sua 
coordenada y (obtida por interpolação) para determinar 
sua posição no vetor ordenado w . Neste caso, as abscis-
sas 0x

 
e mx

 
são, respectivamente, min( )v

 
e max( )v  e as 

ordenadas 0y
 
e my

 
são, respectivamente, 0  e ( )len 1v − . 

A fórmula de interpolação linear (Figura 1), adaptada e 
implementada em Python [7], é apresentada na Figura 2. 

1 from math import floor 

2  

3 def lif(v):    # linear interpolation function 

4     x0 = min(v) 

5     xm = max(v) 

6     ym = len(v)-1 

7     def h(x): return floor(ym*(x-x0)/(xm-x0)) 

8     return h if x0<xm else None 

Figura 2 – Síntese da função de interpolação para um vetor v. 

A função lif()devolve uma função de interpolação 
linear h, adaptada para o vetor v. A Figuras 3 mostra o 
uso da função e Figura 4 exibe o vetor ordenado por ela. 

>>> v = [53, 68, 10, 42, 37, 91, 86, 25, 74] 

>>> h = lif(v) 

>>> for x in v: print('h(%s) = %s' % (x,h(x))) 

h(53) = 4 

h(68) = 5 

h(10) = 0 

h(42) = 3 

h(37) = 2 

h(91) = 8 

h(86) = 7 

h(25) = 1 

h(74) = 6 

Figura 3 – Mapeamento feito pela função de interpolação. 
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Figura 4 – Funcionamento da ordenação por interpolação. 

No melhor caso, a complexidade da ordenação por 
interpolação linear, tanto temporal quanto espacial, é 

( )nΟ . O problema é que o melhor caso só ocorre quando 
o vetor não tem repetição e os itens têm uma distribuição 
uniforme (formam progressão aritmética aproximada). 

2.2. Tratamento de Colisões 

Por usar a função floor(), a função ( )lifh v=  tem a 
seguinte propriedade: para quaisquer dois itens ,i jx x v∈ , 
se i jx x≤ , então ( ) ( )i jh x h x≤ . Isso significa que dois itens 
de v , mesmo que distintos, podem ser mapeados para a 
mesma posição de w (Figura 5). Quando isso acontece, 
dizemos que houve uma colisão. Para tratar tais colisões, 
cada posição de w  precisaria guardar a lista de itens que 
colidiram naquela posição, como ilustrado na Figura 6. 

>>> v = [50, 68, 19, 45, 27, 99, 80, 25, 79] 

>>> h = lif(v) 

>>> for x in v: print('h(%s) = %s' % (x,h(x))) 

h(50) = 3 

h(68) = 4 

h(19) = 0 

h(45) = 2 

h(27) = 0 

h(99) = 8 

h(80) = 6 

h(25) = 0 

h(79) = 6 

Figura 5 – Colisões produzidas pela função de mapeamento. 

 
Figura 6 – Esquema para tratamento de colisões. 

2.3. O Algoritmo Intersort 

O algoritmo recursivo para ordenação por interpola-
ção, criado a partir das ideias apresentadas nas Seções 2.1 

e 2.2, é implementado em Python na Figura 7. 

 1 def intersort(v): 

 2     h = lif(v) 

 3     if not h: return 

 4     n = len(v) 

 5     W = [[] for k in range(n)] 

 6     for x in v:                   

 7         j = h(x) 

 8         W[j].append(x) 

 9     i = 0 

10     for w in W: 

11         if len(w)>1: intersort(w) 

12         for x in w: 

13             v[i] = x 

14             i += 1 

Figura 7 – O algoritmo Intersort. 

Nesta função, a linha 2 sintetiza a função h, adaptada 

para o vetor v que é dado como entrada. Se v tiver apenas 

um item, ou se todos os seus itens forem iguais, então 

x0 = min(v) é igual a xm = max(v) e, portanto, h é nula 

(vide linha 9 do algoritmo na Figura 2). Neste caso, a 
linha 3 é executada e a função termina. Caso contrário, a 

linha 5 cria uma lista W com n = len(v) sublistas vazias 

(para guardar as colisões) e a linha 6 distribui os n itens 

de v nas sublistas de W. Finalmente, na linha 10, cada 

sublista de W é ordenada recursivamente (se tiver mais 

que um item) e seus itens são copiados de volta para v. 
Note que, quando v tem apenas dois itens (distintos), a 

interpolação garante que o menor ficará na sublista W[0] 

e o maior ficará na sublista W[1] e, portanto, podemos 

garantir também que a recursão sempre termina. 
No melhor caso, quando os itens de v têm distribui-

ção uniforme, a complexidade do algoritmo Intersort, 
tanto temporal quanto espacial, é ( )nΟ . Porém, no pior 

caso, quando a sequência ordenada tem amplificação 

fatorial aproximada, sua complexidade, tanto temporal 
quanto espacial, é 

2( )nΟ . Neste caso, a cada etapa de dis-
tribuição dos itens a serem ordenados, a função h mapeia 

o maior item para a sublista W[n-1] e todos os demais 

itens para a sublista W[0] (Figura 8). 

 
Figura 8 – Pior caso para o algoritmo Intersort. 

3. Algoritmos de Referência 

Para avaliarmos a eficiência do algoritmo Intersort, 
vamos compará-lo aos algoritmos Quicksort e Flashsort. 
Como dissemos anteriormente, esses dois algoritmos de 

ordenação foram escolhidos como referência por serem 

considerados os mais eficientes entre aqueles baseados 

em comparação e em mapeamento, respectivamente. 

v: 24 720 6 120 2 

0 1 2 3 4 

     w:

0 1 2 3 4 

v1: 24 6 120 2 720 

0 1 2 3 0 

    w1:

0 1 2 3 

24 6 2 120 v2:

0 1 2 0 

   w2:

0 1 2 

6 2 24 v3:

0 1 0 

  w3:

0 1 

2 6 v4:

0 0 

n 

n 
n

2 

50 68 19 45 27 99 80 25 79 v:

0 1 2 3 4 5 6 7 8 

         w:

0 1 2 3 4 5 6 7 8 

19 27 25 45 50 68 80 79 99 

0 1 2 0 0 0 0 1 0 

53 68 10 42 37 91 86 25 74 v:

0 1 2 3 4 5 6 7 8 

10 25 37 42 53 68 74 86 91 w:

0 1 2 3 4 5 6 7 8 

h



3.1. O Algoritmo Quicksort 

Quicksort é um algoritmo de ordenação por compara-
ção [3], que usa uma estratégia de divisão e conquista. A 

divisão é feita por partição e a conquista por recursão. 
Dado um vetor [ ]..v start end , a operação de partição 

compara os itens de v
 
a um item pivot , permuta esses 

itens, e devolve um índice cut  que corta o vetor v  em duas 

partes, [ ]..v start cut  e [ ]1..v cut end+ , tais que x pivot≤ , para 

todo [ ]..x v start cut∈ , e x pivot≥ , para todo [ ]1..x v cut end∈ + . 
Essa operação é implementada em Python na Figura 9. 

 1 def partition(v,start,end): 

 2     pivot = v[(start+end)//2] 

 3     i = start-1 

 4     j = end+1 

 5     while True: 

 6         i += 1 

 7         j -= 1 

 8         while v[i] < pivot: i += 1 

 9         while v[j] > pivot: j -= 1 

10         if i<j: (v[i], v[j]) = (v[j], v[i]) 

11         else: return j 

Figura 9 – Operação de partição, usada pelo Quicksort. 

Após a partição de v , a ordenação de cada uma de 

suas partes é um problema independente. Então, para 

ordenar v completamente, basta ordenar recursivamente 

cada uma das partes (similar à ordenação das listas de 
colisões no Intersort). A implementação recursiva do 

Quicksort, em Python, é apresentada na Figura 10.  

1 def quicksort(v): 

2     qs(v,0,len(v)-1) 

3 

4 def qs(v,start,end): 

5     if start == end: return 

6     cut = partition(v,start,end) 

7     qs(v,start,cut) 

8     qs(v,cut+1,end) 

Figura 10 – O algoritmo Quicksort. 

A função quicksort()é apenas um wrapper para a 

função qs(), que implementa a estratégia recursiva. O 

melhor caso para qs() acontece quando a operação 

partition() sempre divide o vetor em duas partes do 

mesmo tamanho. Neste caso, a complexidade temporal 
do Quicksort é ( lg )n nΟ  e sua complexidade espacial é 

(lg )nΟ , como mostra a Figura 11.  

 
Figura 11 – Melhor caso para o algoritmo Quicksort. 

O pior caso para qs() ocorre quando partition() 

sempre divide o vetor em uma parte com apenas um item 

e outra parte com todos os demais itens. Neste caso, a 

complexidade temporal de Quicksort é 2( )nΟ  e sua 

complexidade espacial é ( )nΟ , como mostra a Figura 12. 

 
Figura 12 – Pior caso para o algoritmo Quicksort. 

3.2. O Algoritmo Flashsort 

Flashsort é um algoritmo de ordenação cuja operação 

principal é o mapeamento [4], mas que também usa com-
paração. O mapeamento reorganiza o vetor de modo que 

ele fique parcialmente ordenado; depois disso, compara-
ções são usadas para garantir sua ordenação completa. 

Sejam x  um item e [ ]0..v end  um prefixo ordenado num 

vetor v , de tamanho ( )1n end> + . A operação de inserção 

insere x  em [ ]0..v end , garantindo ( )0.. 1v end +    ordenado. 
Essa operação é implementada em Python na Figura 13.  

1 def insert(x,v,end): 

2     while end>=0 and v[end]>x: 

3         v[end+1] = v[end] 

4         end -= 1 

5     v[end+1] = x        

Figura 13 – Operação de inserção, usada pelo Flashsort. 

De fato, a inserção também é a operação fundamental 
de um algoritmo de ordenação baseada em comparação 

chamado Insertionsort [2], implementado na Figura 14.  

1 def insertionsort(v): 

2     for i in range(1,len(v)): 

3         insert(v[i],v,i-1) 

Figura 14 – O algoritmo Insertionsort. 

Note que, quando [ ]x v end≥ , nenhum item precisa ser 

movido pela função insert(). Portanto, no melhor caso, 
quando o vetor v é crescente, a complexidade temporal 
do Insertionsort é ( )nΟ . No pior caso, quando v é decres-
cente, sua complexidade temporal é 2( )nΟ . 

 Um fato importante é que, para vetores parcialmente 

ordenados, a complexidade do Insertionsort permanece 

praticamente linear. O Flashsort explora justamente esse 

fato, ou seja, ele ordena o vetor parcialmente e, depois, 
usa Insertionsort para garantir sua ordenação completa.  

Para ordenar v  parcialmente, o Flashsort o particiona 

em pilhas que correspondem às listas de colisões usadas 

no Intersort, usando um vetor de topos t . Inicialmente, 
t é preenchido com os totais de colisões geradas pelo 

mapeamento por interpolação; depois,
 

t  é transformado 

numa soma de prefixos, resultando num vetor de topos. 

n 

27 68 54 19 80 42 31 73 

19 68 54 27 80 42 31 73 

68 54 27 73 42 31 80 

54 68 73 42 31 27 

54 68 31 42 73 

54 42 31 68 

31 42 54 

31 42 

n 
n

2 

80 31 73 42 68 19 54 27 

27 31 19 42 68 73 54 80 

27 19 31 42 

19 27 31 42 

68 54 73 80 

54 68 73 80 

lg n 

n 
n lg n 



  
Figura 15 – Síntese do vetor de topos t . 

A Figura 15 exemplifica a síntese do vetor
 

t , a partir 
do vetor v , e a Figura 16 mostra como

 

t  particiona
 

v
 

em 
várias pilhas. Após o particionamento, o Flashsort per-
muta os itens de v  para que cada um deles fique na pilha 
correta, indicada pelo mapeamento por interpolação. No 
final desta etapa, o vetor já está quase ordenado; então, o 
Flashsort usa o Insertionsort para concluir a ordenação. 
A Figura 17 mostra a implementação do Flashsort. 

 
Figura 16 – Partição de v  em pilhas, de acordo com t . 

 1 def flashsort(v): 

 2     h = lif(v) 

 3     if not h: return 

 4     n = len(v) 

 5     t = n*[0] 

 6     for x in v: t[h(x)] += 1 

 7     for i in range(1,n): t[i] += t[i-1] 

 8     m = 0 

 9     j = 0  

10     k = n-1 

11     while m < n-1: 

12         while j > t[k]-1:  

13             j += 1 

14             k = h(v[j])             

15         while j != t[k]: 

16             k = h(v[j]) 

17             t[k] -= 1 

18             (v[j], v[t[k]]) = (v[t[k]], v[j]) 

19             m += 1 

20     insertionsort(v)        

Figura 17 – O algoritmo Flashsort. 

Note que a síntese do vetor t  (linhas 5 a 7) e a organi-
zação das pilhas induzidas por ele (linhas 11 a 19) têm 
complexidade temporal e espacial ( )nΟ , pois cada item 
só pode ser movido uma única vez para a pilha correta. 
Portanto, no melhor e no pior casos, as complexidades 
temporais de Flashsort são, as mesmas do Insertionsort e 
sua complexidade espacial é ( )nΟ . Porém, como o vetor 
passado como entrada para o Insertionsort (linha 20) está 
parcialmente ordenado, a complexidade temporal espera-
da para o Flashsort é ( )nΟ . 

4. Metodologia e Resultados Empíricos 

Todos os algoritmos♠
 foram implementados com o 

compilador Python 3.4.3, 32 bits, rodando numa máquina 

Intel(R) Core(TM) i7-5500U @ 2.40GHz, com 4GB de me-
mória RAM DDR3, no sistema operacional Windows 10. 
                                                           
♠ Disponível em www.ime.usp.br/~slago/intersort.py. 

4.1. Dados Usados nos Experimentos 

Os vetores usados nos experimentos foram criados 

com a função randseq(n,g), que recebe um parâmetro 

n, indicando o tamanho do vetor, e um parâmetro opcio-
nal g, indicando a função geradora de números aleatórios 

desejada (que pode seguir uma distribuição de probabili-
dades uniforme, multinomial ou gaussiana). Todas essas 

funções foram implementadas em Python. A Figura 18 

mostra exemplos de como os dados são distribuídos nos 

vetores aleatórios criados nos experimentos, para 610n = . 

   
                  (a) Permutação aleatória                                        (b) Distribuição uniforme  

   
                   (c) Distribuição multinomial                                 (d) Distribuição gaussiana 

Figura 18 – Distribuições obtidas com as funções geradoras. 

A Figura 18-a mostra a distribuição dos dados num 

vetor criado com a chamada randseq(n), que devolve 

uma permutação aleatória da sequência [ )0.. n ; neste 

caso, claramente, o mapeamento não produz colisões. 
 A Figura 18-b mostra a distribuição dos dados num 

vetor criado com randseq(n,uniform(range(n))), 
que gera uma sequência com n  itens escolhidos em [ )0.. n , 
com distribuição uniforme (i.e., todos os itens têm a mes-
ma probabilidade de serem escolhidos). Com esta distri-
buição, o número médio de colisões em cada posição, 
geradas pelo mapeamento em 50 vetores, foi 1.4

 

(baixo). 
A Figura 18-c mostra a distribuição num vetor criado 

com randseq(n, multinomial( range (1000*n) ) ), 
que devolve uma sequência com n  itens escolhidos em 

[ )0..1000n , com distribuição multinomial (i.e., cada item 

tem uma probabilidade distinta de ser escolhido, definida 

aleatoriamente a priori). Com esta distribuição, o núme-
ro médio de colisões em cada posição, geradas pelo ma-
peamento em 50 vetores, foi 2.8

 

(moderado). 
A Figura 18-d mostra a distribuição num vetor criado 

com randseq( n, gaussian( n, n/2, n/16)  ) ), que 

devolve uma sequência com n  itens escolhidos em [ ]0.. n , 
com distribuição gaussiana (com limite n , média 2nµ=  

e desvio padrão 16nσ= ). Com esta distribuição, o núme-
ro médio de colisões em cada posição, geradas pelo ma-
peamento em 50 vetores, foi 3.6

 

(alto). 
Os experimentos foram feitos com vetores de tama-

nho n  variando de 510  a 610 . Os tempos reportados são a 

média dos tempos medidos para 12  vetores aleatórios, 
para cada n  e cada tipo de distribuição, excluindo-se os 

tempos mínimo e máximo medidos. Os tempos foram 

medidos com a função time()do Python, com precisão 

de 20 ms. O computador tem 4 núcleos de processamen-
to, sendo um deles para uso exclusivo dos experimentos. 

50 68 19 45 27 99 80 25 79 v:

0 1 2 3 4 5 6 7 8 

3 3 4 5 6 6 8 8 9 t:

0 1 2 3 4 5 6 7 8 

50 68 19 45 27 99 80 25 79 v:

0 1 2 3 4 5 6 7 8 

3 0 1 1 1 0 2 0 1 t:

0 1 2 3 4 5 6 7 8 

3 3 4 5 6 6 8 8 9 t:

0 1 2 3 4 5 6 7 8 

 

soma de prefixos



A Tabela I exibe as características das distribuições.  

Tabela I – Características das distribuições consideradas. 

Distribuição Permutação Uniforme Multinomial Gaussiana 

Colisões nenhuma baixo moderado alto 

Repetições nenhuma poucas poucas muitas 

4.2. Permutação Aleatória 

Os tempos de ordenação de vetores contendo permu-
tações aleatórias são dados na Figura 19. Neste cenário, 
não há colisões, nem itens repetidos nos vetores. 

 

Figura 19 – Permutações aleatórias. 

Como esperado, os algoritmos que usam mapeamen-
to foram mais rápidos que Quicksort, que usa apenas 

comparação. Porém, vale ressaltar que esses algoritmos 

só ordenam vetores numéricos, enquanto Quicksort pode 

ordenar vetores contendo itens de qualquer tipo de dados 
para o qual seja possível definir uma relação de ordem 
como, por exemplo, string.  

Como não há colisões em permutações, Flashsort e 

Intersort consomem praticamente a mesma quantidade 

de memória. Portanto, neste cenário, Intersort é mais efi-
ciente que Flashsort, pelo menos com relação a tempo. 

4.3. Distribuição Uniforme  

Os tempos de ordenação de vetores contendo itens 

com distribuição uniforme são dados na Figura 20. Neste 

cenário, o número de colisões esperadas é baixo e a quan-
tidade de itens repetidos nos vetores é pequena. 

  

Figura 20 – Itens com distribuição uniforme. 

Como o número colisões é baixo, Intersort não gasta 

muito mais memória que Flashsort. Ademais, como são 
escolhidos n  itens entre n  possibilidades, os itens mapea-
dos para uma mesma lista de colisões são iguais. Isso é 

vantajoso para o Intersort, pois permite que suas chama-
das recursivas terminem mais rapidamente. Portanto, 
neste segundo cenário considerado, Intersort continua 

sendo o algoritmo mais eficiente. 

4.4. Distribuição Multinomial  

Os tempos de ordenação de vetores contendo itens 

com distribuição multinomial são dados na Figura 21. 
Neste cenário, o número de colisões esperadas é modera-
do e o número de itens repetidos nos vetores é pequeno. 

  

Figura 21 – Itens com distribuição multinomial. 

Como o número colisões é moderado, Intersort pode 

gastar mais memória que Flashsort. Ademais, como são 

escolhidos n  itens entre 1000n  possibilidades, na maior 

parte das listas de colisões, há pouca chance de haver 

itens iguais. Isso é desvantajoso para Intersort, pois exige 

uma quantidade maior de chamadas recursivas. Mesmo 

assim, ao contrário do que seria esperado, o Intersort foi 
o algoritmo mais eficiente neste terceiro cenário.  

Um ponto interessante observado neste cenário é que, 
como as probabilidades da distribuição multinomial são 

escolhidas aleatoriamente para cada novo vetor gerado, o 

comportamento temporal do Flashsort fica um pouco 

instável (inclusive apresentando picos que superam o 

tempo do Quicksort, quando o tempo máximo medido 
nos experimentos não é excluído no cálculo do tempo 

médio reportado, como pode ser visto na Figura 22). 

  

Figura 22 – Comportamento temporal instável do Flashsort. 



É importante ressaltar que a instabilidade observada 

na Figura 22 não é decorrente da interferência de outros 

processos em execução simultânea no computador. 
Como dito anteriormente, os experimentos foram execu-
tados em um núcleo dedicado do computador. Além 

disso, se houvesse alguma interferência, seria totalmente 

improvável que ela prejudicasse apenas o desempenho 

do algoritmo Flashsort (como se observa no gráfico), 
pois os algoritmos são executados de forma alternada 
(como se pode verificar no código-fonte disponível). 

4.5. Distribuição Gaussiana  

Os tempos de ordenação de vetores contendo itens 

com distribuição gaussiana são dados na Figura 23. Neste 

cenário, o número de colisões esperadas é alto e há mui-
tos itens repetidos nos vetores (observe na Figura 18-d 

que os itens com maior probabilidade de escolha estão 

concentrados num subintervalo muito estreito de [ ]0.. n ). 

  

Figura 23 – Itens com distribuição gaussiana. 

Como o número colisões é alto, Intersort poderia 

gastar muito mais memória que Flashsort; porém, como 

há muitos itens repetidos nas listas de colisões, assim que 

eles ficam todos iguais, o Intersort pode interromper as 

chamadas recursivas. Consequentemente, o consumo de 

memória do Intersort não chega a ser tão grande e, além 

disso, seu consumo de tempo é muito pequeno. De fato, 
mesmo com um número alto de colisões, entre os quatro 

cenários considerados, este foi o melhor para o Intersort. 

5. Conclusões 

Os algoritmos de ordenação de vetores descritos na 

literatura são classificados como algoritmos baseados em 

comparação ou algoritmos baseados em mapeamento, 
dependendo de qual é a principal operação usada por eles 

para ordenar os itens de um vetor. Aqueles algoritmos 

baseados em comparação de itens são mais flexíveis, 
podendo ser usados para ordenar vetores com itens de 

qualquer tipo para o qual seja possível definir uma rela-
ção de ordem como, por exemplo, string; porém, o con-
sumo de tempo mínimo destes algoritmos é ( lg )n nΩ . Por 

outro lado, aqueles algoritmos baseados em mapeamento 

de itens são mais eficientes, com consumo de tempo mí-
nimo ( )nΩ ; porém, esses algoritmos são limitados a orde-
nar apenas vetores cujos itens sejam de tipo numérico. 

Entre os algoritmos de ordenação baseada em compa-
ração, o Quicksort é considerado um dos mais eficientes, 
com complexidade de tempo esperada ( )lgn nΟ . Por outro 

lado, entre os algoritmos de ordenação baseada em ma-
peamento, Flashsort é considerado um dos mais eficien-
tes, com complexidade de tempo esperada ( )nΟ . Porém, 
de fato, Flashsort é um algoritmo híbrido, pois ordena 

vetores usando tanto mapeamento quanto comparação. 
Assim, o principal objetivo deste artigo foi investigar se 

um algoritmo baseado unicamente em mapeamento, feito 

por interpolação linear, poderia ser uma alternativa mais 

eficiente para a ordenação de vetores numéricos. 
 Para verificar essa hipótese, mostramos como imple-

mentar em Python um algoritmo de ordenação baseada 

em mapeamento por interpolação linear, que denomina-
mos Intersort. Além deste algoritmo, também implemen-
tamos os algoritmos Quicksort, Flashsort, e uma série de 

algoritmos para geração de vetores contendo números 

inteiros aleatórios, de acordo com diversas distribuições 

de probabilidade. Em todos os experimentos comparati-
vos realizados, o Intersort foi o algoritmo mais eficiente 

em todos os cenários considerados (pelo menos com rela-
ção ao consumo de tempo, já que o consumo de memória 

não foi efetivamente medido nos experimentos). 
Um fato importante que devemos ressaltar é que, nos 

cenários avaliados nos experimentos, não usamos vetores 

contendo sequências de itens com amplificação fatorial 

aproximada, o que faria Intersort consumir tempo 

2( )nΟ . 
Tomamos essa decisão pela impossibilidade de gerar 

sequências desse tipo com 610  itens (pois a taxa de cres-
cimento da função fatorial torna impossível representar 

valores tão grandes na memória do computador). Apesar 

disso, também ressaltamos que os vetores de inteiros 
aleatórios usados nos experimentos simulam dados que 
normalmente são encontrados em situações práticas de 

ordenação e que, portanto, o algoritmo Intersort pode ser 
uma alternativa viável e eficiente para uso prático. 
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