ORDENACAO BASEADA EM INTERPOLACAO LINEAR

Silvio do Lago Pereira’
! Prof. Dr. do Departamento de Tecnologia da Informacdao — FATEC-SP
slago @fatecsp.br

Resumo

Ha duas operacdes bésicas que podem ser usadas para
ordenar um vetor: comparagdo e mapeamento. Entre os
algoritmos que ordenam usando comparagdo, Quicksort
€ o mais rdpido. Por outro lado, entre os algoritmos que
ordenam usando mapeamento, Flashsort € um dos mais
rapidos. Porém, Flashsort € um algoritmo hibrido, pois
ele também usa comparagdo. Neste artigo, implementa-
mos um algoritmo de ordenag@o baseada unicamente em
mapeamento, que denominamos Intersort, e analisamos
empiricamente sua eficiéncia em relagéio aos outros dois
algoritmos. Os resultados empiricos mostraram que este
algoritmo proposto é uma alternativa bem interessante.

1. Introdugdo

Ordenagdo é um assunto de grande importancia em
ciéncia da computacdo, tanto tedrica quanto préatica.
Formalmente, dado um vetor v com # itens arbitrarios em
ordem aleatdria, a ordenacdo consiste em encontrar uma
permutacdo w de v, tal que wy < wy <wy <<y, [1].

Ha duas operagdes bésicas que podem ser usadas para
ordenar vetores: comparac¢do € mapeamento*. A compa-
racdo permite identificar pares de itens que estdo fora de
ordem, e trocd-los de posicdo, até que uma permutacio
ordenada seja obtida. O mapeamento, feito por uma
funcdo aplicada a um item, determina a posi¢do em que
este item deverd estar na permutacdo ordenada, sem
precisar levar em conta os demais itens do vetor.

Na literatura da drea, h4 vérios algoritmos de ordena-
¢do que usam apenas compara¢do como, por exemplo,
Bubblesort, Selectionsort, Insertionsort, Heapsort, Mer-
gesort e Quicksort [1,2, 3]. Por outro lado, Countingsort
¢ o tnico algoritmo de ordenacao amplamente conhecido
que usa apenas mapeamento [1]. Um resultado provado
na literatura [1], e bem conhecido, é que a complexidade
temporal dos algoritmos de ordenag@o que usam apenas
comparagdo € Q(nlgn), enquanto aquela dos algoritmos
que usam apenas mapeamento é Q(n) . Entdo, claramente,
algoritmos baseados apenas em mapeamento sdo 6timos.
Porém, apesar disso, tais algoritmos tém aplicacdo limi-
tada, podendo ser usados somente para ordenar vetores
de itens inteiros, escolhidos dentro de um intervalo bem
reduzido. Por este motivo, na prética, os algoritmos que
usam mapeamento sdo hibridos (i.e., usam mapeamento
e também comparagdo) como, por exemplo, Radixsort,
Bucketsort [1] e Flashsort [4]. Entre os algoritmos que
usam apenas comparacio, Quicksort é o mais rapido,
entre aqueles que sdo hibridos, Flashsort € o mais rapido.

Assim, o objetivo deste artigo € implementar o algo-
ritmo de ordenacdo Infersort, que usa apenas interpo-
lagdo linear (i.e., uma operacdo de mapeamento) para
mapear os itens de v as respectivas posicdes que eles
devem ocupar em w, bem como analisar sua eficiéncia
com relagdo aos algoritmos Quicksort e Flashsort.

* Em inglés, hashing.

A organizag@o do restante deste artigo € a seguinte:
na Se¢do 2, mostramos como usar interpolacdo linear
para criar o algoritmo Intersort; na Se¢do 3, apresenta-
mos as versdes de Quicksort e Flashsort, usadas nos
experimentos comparativos; na Secdo 4, apresentamos a
metodologia e os resultados empiricos; e, finalmente, na
Secdo 5, apresentamos as conclusdes finais do trabalho.

2. Ordenacdo por Interpolacao Linear

Interpolacdo linear [5] € um método numérico para
gerar pontos num segmento de reta com extremos (xy.yg)
€ (%,.¥) - Dada a coordenada x de um ponto nessa reta,
sua coordenada y pode ser geometricamente derivada,
usando semelhanca de tridngulos, como mostra a Figura 1.

m Y~ Yo _ *~Xo
y Ym = Yo Xm —Xo
X—X
= y=yo=w=Y0) .
Xm ~Xo
)O'WJ . X=X
= = vor (vu-y) ——
xo '\R x777 " 0

Figura 1 — Derivagdo da férmula de interpolacio linear.

2.1. Mapeamento por Interpolagcdo

Mapeamento [6] é uma func¢do h(x) que transforma
um item x num indice 0 <h(x)<n . Mais especificamente,
mapeamento por interpola¢do, consiste em interpretar
cada item do vetor v como uma coordenada x e usar a sua
coordenada y (obtida por interpolacdo) para determinar
sua posicdo no vetor ordenado w . Neste caso, as abscis-
sas xg € x,, sdo, respectivamente, min(v) € max(v) € as
ordenadas y, e y, sdo, respectivamente, 0 € len(v)-1.
A férmula de interpolagdo linear (Figura 1), adaptada e
implementada em Python [7], € apresentada na Figura 2.

from math import floor

lef 1if(v):
x0 = min (v)
xm = max (v)
ym = len(v)-1

7 def h(x): return floor (ym* (x-x0)/ (xm-x0)

8 return h if x0<xm else None

linear interpolation function

IS, S

Figura 2 — Sintese da fungdo de interpolacéo para um vetor v.

A fungdo 11if () devolve uma funcdo de interpolacio
linear h, adaptada para o vetor v. A Figuras 3 mostra o
uso da fungdo e Figura 4 exibe o vetor ordenado por ela.

>>> v = [53, 68, 10, 42, 37, 91, 86, 25, 74]
>>> h = 1if (v)

>>> for x in v: print('h(%s) = %$s' % (x,h(x)))
h(53) = 4

h(68) =5

h(10) = 0

h(42) = 3

h(37) = 2

h(91) = 8

h(86) = 7

h(25) =1

h(74) = 6

Figura 3 — Mapeamento feito pela funcéo de interpolacéo.

0 1 2 3 4 5 6 7 8
v:[53]68]10]42]37]91]86]25]74]

Y |4 Y Y Y Y Y Y A2
w:[10]25]37]42]53]68]74] 86] 91]
0 1 2 3 4 5 6 7 8

Figura 4 — Funcionamento da ordenag¢@o por interpolagao.

No melhor caso, a complexidade da ordenacdo por
interpolacdo linear, tanto temporal quanto espacial, é
O(n) . O problema é que o melhor caso s6 ocorre quando
o vetor ndo tem repeticdo e os itens t€m uma distribui¢do
uniforme (formam progressdo aritmética aproximada).

2.2. Tratamento de Colisoes

Por usar a fungdo floor (), a fungdo h=lif(v) tem a
seguinte propriedade: para quaisquer dois itens x;,x;€v,
se x;<x;, entdo h(x;) <h(x;) . Isso significa que dois itens
de v, mesmo que distintos, podem ser mapeados para a
mesma posi¢do de w (Figura 5). Quando isso acontece,
dizemos que houve uma colisdo. Para tratar tais colisdes,
cada posicdo de w precisaria guardar a lista de itens que

colidiram naquela posic¢do, como ilustrado na Figura 6.

>>> v = [50, 68, 19, 45, 27, 99, 80, 25, 79]
>>> h = 1if (v)
>>> for x in v: print('h(%s) = %$s' % (x,h(x)))

|
w

I
OO0 ONO N

Figura 5 — Colisodes produzidas pela fungdo de mapeamento.

0 1 2 3 4 5 6 7 8
vi[50]68]19]45][27]99]80]25]79]

\4 Y Y Y A\ Y

e T el oL Te Ty
NN

0 1 2 0 0 0 1 0
‘19”27“25”45”50”68“80”79”99‘

Figura 6 — Esquema para tratamento de colisdes.

2.3. O Algoritmo Intersort

O algoritmo recursivo para ordenagdo por interpola-
¢do, criado a partir das ideias apresentadas nas Se¢des 2.1
e 2.2, é implementado em Python na Figura 7.

1 def intersort (v):
h = 1if (v)
3 i not h: retur
4 n len (v)
5 W = [[] for k in range(n)]
6 for x in v:
7 j = h(x)
8 W([J].append(x)
) i=0
10 fc w1 W:
11 if len(w)>1: intersort (w)
12 for x in w
13 v[i] = x
14 i +=1

Figura 7 — O algoritmo Intersort.

Nesta funcdo, a linha 2 sintetiza a funcdo h, adaptada
para o vetor v que € dado como entrada. Se v tiver apenas
um item, ou se todos os seus itens forem iguais, entdo
x0=min (v) éigual a xm=max (v) e, portanto, h é nula
(vide linha 9 do algoritmo na Figura 2). Neste caso, a
linha 3 é executada e a func¢@o termina. Caso contrdrio, a
linha 5 cria uma lista W com n=1en (v) sublistas vazias
(para guardar as colisdes) e a linha 6 distribui os n itens
de v nas sublistas de w. Finalmente, na linha 10, cada
sublista de W é ordenada recursivamente (se tiver mais
que um item) e seus itens sdo copiados de volta para v.
Note que, quando v tem apenas dois itens (distintos), a
interpolacdo garante que o menor ficard na sublista W[0]
e o maior ficard na sublista W[1] e, portanto, podemos
garantir também que a recursdo sempre termina.

No melhor caso, quando os itens de v t€m distribui-
cdo uniforme, a complexidade do algoritmo Intersort,
tanto temporal quanto espacial, € O(n). Porém, no pior
caso, quando a sequéncia ordenada tem amplificacdo
fatorial aproximada, sua complexidade, tanto temporal
quanto espacial, é O(nz) . Neste caso, a cada etapa de dis-
tribuic@o dos itens a serem ordenados, a fung¢do h mapeia
0 maior item para a sublista W[n-1] e todos os demais
itens para a sublistaw [0] (Figura 8).

0 1 2 3 4
v:‘ 24 H720H 6 H120H 2 ‘
¥ ’ ‘
0 1 2 3 4
wi o | A T e |
v y
0 1 2 3 0
v \ 24 H 6 leoH 2 H720\
A\ 4 \ v
0 1 2 3
v o | e]
v v
0 1 2 0
vz:‘ 24 H 6 H 2 H12o‘ n
A4 N
0 1 2
e
0 1 0
vs

Figura 8 — Pior caso para o algoritmo Intersort.

3. Algoritmos de Referéncia

Para avaliarmos a eficiéncia do algoritmo Intersort,
vamos compara-lo aos algoritmos Quicksort e Flashsort.
Como dissemos anteriormente, esses dois algoritmos de
ordenagdo foram escolhidos como referéncia por serem
considerados os mais eficientes entre aqueles baseados
em comparacio e em mapeamento, respectivamente.

3.1. O Algoritmo Quicksort

Quicksort € um algoritmo de ordenacéo por compara-
¢do [3], que usa uma estratégia de divisdo e conquista. A
divisdo € feita por particdo e a conquista por recursdo.

Dado um vetor v[start..end| , a operagdo de parti¢do
compara os itens de v a um item pivor, permuta esses
itens, e devolve um indice cur que corta o vetor v em duas
partes, v[start.. cut] e v[cut+1 ..end] , tais que x < pivor , para
todo xe v[start ..cut] , € x 2 pivot , para todo xe v]cut+1..end] .
Essa operagdo é implementada em Python na Figura 9.

1 def partition(v,start,end):

2 pivot = v[(start+end)//2]
3 i = start-1
4 j = end+l
5 vhile True:
6 i+=1
j =1
8 while v[i] < pivot: 1 += 1
e vhile v[j] > pivot: j —=1
10 1f i<3j: (v[il, vI[3]) = (v[3], vIi])

11 else: return j

Figura 9 — Operacio de particao, usada pelo Quicksort.

Ap6s a parti¢do de v, a ordenacdo de cada uma de
suas partes é um problema independente. Entdo, para
ordenar v completamente, basta ordenar recursivamente
cada uma das partes (similar a ordenag@o das listas de
colisdes no Intersort). A implementacdo recursiva do

Quicksort, em Python, € apresentada na Figura 10.

‘27“68”54H19H80H42H31H73‘

B RIEREEE
(se]salz |73 a2 o]
IBIE B EER

I=]
&

2

R S

n

1 def quicksort (v):
2 gs(v,0,len(v)-1)

4 def gs(v,start,end):

5 if start == end: return

6 cut = partition(v,start,end)
7 gs (v, start, cut)

8 gs (v, cut+l,end)

Figura 10 — O algoritmo Quicksort.

A fung@o quicksort () é apenas um wrapper para a
fun¢do gs (), que implementa a estratégia recursiva. O
melhor caso para gs() acontece quando a operacdo
partition () sempre divide o vetor em duas partes do
mesmo tamanho. Neste caso, a complexidade temporal
do Quicksort € O(nlgn) e sua complexidade espacial é
O(lgn) , como mostra a Figura 11.

‘80”31”73“42”68”19”54“27‘

\27“19v\ ‘68”54\‘(

Ign

Y Y
\31“42\ ‘73”80‘

-
©
N}
-
w
=
[y
N
o
IS
-
w
<

.............. nlgn

Figura 12 — Pior caso para o algoritmo Quicksort.

3.2. O Algoritmo Flashsort

Flashsort é um algoritmo de ordenacdo cuja operagcdo
principal € o mapeamento [4], mas que também usa com-
paracdo. O mapeamento reorganiza o vetor de modo que
ele fique parcialmente ordenado; depois disso, compara-
coes sdo usadas para garantir sua ordenag@o completa.

Sejam x um item e v[0.. end] um prefixo ordenado num
vetor v, de tamanho n>(end+1) . A operagdo de inser¢do
insere x em v[0..end], garantindo v[0..(end+1)] ordenado.
Essa operacdo € implementada em Python na Figura 13.

1 def insert (x,v,end) :

2 while end>=0 and v[end]>x:
3 v[end+1l] = v[end]

4 end —= 1

5 v[end+l] = x

Figura 13 — Operacdo de inser¢do, usada pelo Flashsort.

De fato, a inser¢éio também € a operacdo fundamental
de um algoritmo de ordenag@o baseada em comparagdo
chamado Insertionsort [2], implementado na Figura 14.

1 def insertionsort(v):
2 ‘or i in range(l,len(v)):
3 insert (v([i],v,i-1)

Figura 11 — Melhor caso para o algoritmo Quicksort.

O pior caso para gs () ocorre quando partition ()
sempre divide o vetor em uma parte com apenas um item
e outra parte com todos os demais itens. Neste caso, a
complexidade temporal de Quicksort é O(nz) e sua
complexidade espacial é O(n) , como mostra a Figura 12.

Figura 14 — O algoritmo Insertionsort.

Note que, quando x2v[end|, nenhum item precisa ser
movido pela func¢io insert (). Portanto, no melhor caso,
quando o vetorv é crescente, a complexidade temporal
do Insertionsort € O(n) . No pior caso, quando v € decres-
cente, sua complexidade temporal é O(nz) .

Um fato importante € que, para vetores parcialmente
ordenados, a complexidade do Insertionsort permanece
praticamente linear. O Flashsort explora justamente esse
fato, ou seja, ele ordena o vetor parcialmente e, depois,
usa Insertionsort para garantir sua ordenagdo completa.

Para ordenar v parcialmente, o Flashsort o particiona
em pilhas que correspondem as listas de colisdes usadas
no Intersort, usando um vetor de topos ¢ . Inicialmente,
t € preenchido com os totais de colisdes geradas pelo
mapeamento por interpolacdo; depois, ¢ € transformado
numa soma de prefixos, resultando num vetor de topos.

0 1 2 3 4 5 6 7 8
v:‘5OH 68”19“45”27” 99”80“25”79‘

\ 4 Y v A\ \4 A\

O =

0 1 2 3 4 5 6
e3fofiaa]o]2]

2 3 4 5 6 7 8
i sfefclefe]s]

[2]

0 1
t:‘ 3 H 3

Figura 15 — Sintese do vetor de topos 7 .

A Figura 15 exemplifica a sintese do vetor 7, a partir
do vetor v, e a Figura 16 mostra como ¢ particiona v em
vérias pilhas. Apds o particionamento, o Flashsort per-
muta os itens de v para que cada um deles fique na pilha
correta, indicada pelo mapeamento por interpolag¢do. No
final desta etapa, o vetor j4 estd quase ordenado; entdo, o
Flashsort usa o Insertionsort para concluir a ordenacio.
A Figura 17 mostra a implementacao do Flashsort.

0 1 2 3 4 5 6 7 8
v:‘5OH 68H19H45H27H 99” 80”25”79‘

0 1 2 3 4 5 6 7 8
el fsfafsle]cfe]e]o]

Figura 16 — Particéio de v em pilhas, de acordo com ¢ .

1 def flashsort(v):

2 h = 1if (v)

3 if not h: return

4 n = len(v)

5 t = n*[0]

6 for x in v: t[h(x)] +=1

7 for i in range(l,n): t[i] += t[i-1]
8 m =0

9 j =20

10 k = n-1

11 while m < n-1:

12 while 3 > t[k]-1:

13 J+=1

14 k = h(V[j])

15 while j !'= t[k]

16 k = h(v[]jl)

17 t[k] —=1

8 (v[31, vIitlkl]) = (vIitlk]]l, v[3])
19 m += 1

20 insertionsort (v)

4.1. Dados Usados nos Experimentos

Os vetores usados nos experimentos foram criados
com a fun¢do randseq (n, g), que recebe um paradmetro
n, indicando o tamanho do vetor, e um parametro opcio-
nal g, indicando a func¢do geradora de nimeros aleatdrios
desejada (que pode seguir uma distribuicio de probabili-
dades uniforme, multinomial ou gaussiana). Todas essas
fungdes foram implementadas em Python. A Figura 18
mostra exemplos de como os dados sdo distribuidos nos
vetores aleatérios criados nos experimentos, para n=10° .

50000

40000

30000

10000

s 0000 400600 G0vGoD 800000 1630000 00000 4onom0 @p0060 GGbOo0 1000000
(a) Permutagdo aleatéria (b) Distribuigdo uniforme

200000

140000 —

150000 |

100000

0000 100000

0000

w0000 0000 |

0 7a0000 48000 0350 0000 1000000 20000 306000 300060

(c) Distribuigdo multinomial (d) Distribuicdo gaussiana

G000 600000 700000 B0G0GD 500000

Figura 17 — O algoritmo Flashsort.

Note que a sintese do vetor ¢ (linhas 5 a 7) e a organi-
zacdo das pilhas induzidas por ele (linhas 11 a 19) tém
complexidade temporal e espacial O(n), pois cada item
s6 pode ser movido uma tnica vez para a pilha correta.
Portanto, no melhor e no pior casos, as complexidades
temporais de Flashsort sdo, as mesmas do Insertionsort e
sua complexidade espacial é O(n) . Porém, como o vetor
passado como entrada para o Insertionsort (linha 20) esta
parcialmente ordenado, a complexidade temporal espera-
da para o Flashsort é O(n) .

4. Metodologia e Resultados Empiricos

Todos os algoritmos* foram implementados com o
compilador Python 3.4.3, 32 bits, rodando numa miquina
Intel(R) Core(TM) i7-5500U @ 2.40GHz, com 4GB de me-
moria RAM DDR3, no sistema operacional Windows 10.

* Disponivel em www. ime.usp.br/~slago/intersort.py.

Figura 18 — Distribuicdes obtidas com as fungdes geradoras.

A Figura 18-a mostra a distribui¢do dos dados num
vetor criado com a chamada randseq (n), que devolve
uma permutacdo aleatéria da sequéncia [0..n) ; neste
caso, claramente, 0 mapeamento nao produz colisoes.

A Figura 18-b mostra a distribuicdo dos dados num
vetor criado com randseq(n, uniform(range (n))),
que gera uma sequéncia com n itens escolhidos em [0..7) ,
com distribuicao uniforme (i.e., todos os itens t€m a mes-
ma probabilidade de serem escolhidos). Com esta distri-
buicdo, o nimero médio de colisdes em cada posicao,
geradas pelo mapeamento em 50 vetores, foi 1.4 (baixo).

A Figura 18-c mostra a distribui¢do num vetor criado
com randseqg(n, multinomial (range (1000*n))),
que devolve uma sequéncia com n itens escolhidos em
[0..10007) , com distribui¢do multinomial (i.e., cada item
tem uma probabilidade distinta de ser escolhido, definida
aleatoriamente a priori). Com esta distribui¢do, o nime-
ro médio de colisdes em cada posi¢do, geradas pelo ma-
peamento em 50 vetores, foi 2.8 (moderado).

A Figura 18-d mostra a distribui¢cdo num vetor criado
com randseq(n,gaussian(n,n/2,n/16))), que
devolve uma sequéncia com n itens escolhidos em [0..7]
com distribui¢do gaussiana (com limite n, média p=n/2
e desvio padréo 6=n/16). Com esta distribui¢io, o nime-
ro médio de colisdes em cada posi¢do, geradas pelo ma-
peamento em 50 vetores, foi 3.6 (alto).

Os experimentos foram feitos com vetores de tama-
nho n variando de 10° a 10°. Os tempos reportados sdo a
média dos tempos medidos para 12 vetores aleatdrios,
para cada n e cada tipo de distribuic@o, excluindo-se os
tempos minimo e maximo medidos. Os tempos foram
medidos com a fung@o time () do Python, com precisdo
de 20 ms. O computador tem 4 nticleos de processamen-
to, sendo um deles para uso exclusivo dos experimentos.

A Tabela I exibe as caracteristicas das distribui¢des.

Tabela I — Caracteristicas das distribui¢cdes consideradas.

Distribui¢do | Permutagdo | Uniforme | Multinomial | Gaussiana

Colisdes nenhuma baixo | moderado alto

Repeti¢oes

nenhuma | poucas poucas muitas

4.2. Permutacdo Aleatoria

Os tempos de ordenacdo de vetores contendo permu-
tacdes aleatérias sdo dados na Figura 19. Neste cendrio,
ndo hé colisdes, nem itens repetidos nos vetores.

8 ; ; ; T T T T T
quicksort —&—

7f| flashsort —&—
intersort —w—

segundos
B

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
itens (x 10°)

Figura 19 — Permutagdes aleatérias.

Como esperado, os algoritmos que usam mapeamen-
to foram mais rdpidos que Quicksort, que usa apenas
comparagdo. Porém, vale ressaltar que esses algoritmos
s6 ordenam vetores numéricos, enquanto Quicksort pode
ordenar vetores contendo itens de qualquer tipo de dados
para o qual seja possivel definir uma relagdao de ordem
como, por exemplo, string.

Como nio hé colisdes em permutagdes, Flashsort e
Intersort consomem praticamente a mesma quantidade
de memoria. Portanto, neste cendrio, Intersort € mais efi-
ciente que Flashsort, pelo menos com relagdo a tempo.

4.3. Distribuicdo Uniforme

Os tempos de ordenagdo de vetores contendo itens
com distribui¢@o uniforme sdo dados na Figura 20. Neste
cendrio, o nimero de colisdes esperadas € baixo e a quan-
tidade de itens repetidos nos vetores € pequena.

g————
quicksort —#&—

71| flashsort —o—
intersort —w—

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
itens (x 10%)

Figura 20 — Itens com distribuic¢@o uniforme.

Como o nimero colisdes é baixo, Intersort ndo gasta
muito mais memoria que Flashsort. Ademais, como sio
escolhidos n itens entre n possibilidades, os itens mapea-
dos para uma mesma lista de colisdes sdo iguais. Isso é
vantajoso para o Intersort, pois permite que suas chama-
das recursivas terminem mais rapidamente. Portanto,
neste segundo cendrio considerado, Intersort continua
sendo o algoritmo mais eficiente.

4.4. Distribuicdo Multinomial

Os tempos de ordenacdo de vetores contendo itens
com distribui¢do multinomial sdo dados na Figura 21.
Neste cendrio, o niimero de colisdes esperadas é modera-
do e o numero de itens repetidos nos vetores € pequeno.

8 T T
quicksort —a&— P

flashsort —6—

intersort —w—

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

itens (x 10%)

Figura 21 - Itens com distribuicdo multinomial.

Como o nimero colisdes é moderado, Intersort pode
gastar mais memoria que Flashsort. Ademais, como sio
escolhidos n itens entre 1000n possibilidades, na maior
parte das listas de colisdes, hd pouca chance de haver
itens iguais. Isso € desvantajoso para Intersort, pois exige
uma quantidade maior de chamadas recursivas. Mesmo
assim, ao contrario do que seria esperado, o Intersort foi
o algoritmo mais eficiente neste terceiro cendrio.

Um ponto interessante observado neste cendrio é que,
como as probabilidades da distribui¢do multinomial sdo
escolhidas aleatoriamente para cada novo vetor gerado, o
comportamento temporal do Flashsort fica um pouco
instavel (inclusive apresentando picos que superam o
tempo do Quicksort, quando o tempo maximo medido
nos experimentos ndo é excluido no célculo do tempo
médio reportado, como pode ser visto na Figura 22).

10 T T T
quicksort —a&—

flashsort —&—
8 intersort —w— h

9t

segundos

0 I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

itens (x 106)

Figura 22 — Comportamento temporal instavel do Flashsort.

E importante ressaltar que a instabilidade observada
na Figura 22 ndo € decorrente da interferéncia de outros
processos em execug¢do simultinea no computador.
Como dito anteriormente, os experimentos foram execu-
tados em um nicleo dedicado do computador. Além
disso, se houvesse alguma interferéncia, seria totalmente
improvével que ela prejudicasse apenas o desempenho
do algoritmo Flashsort (como se observa no gréfico),
pois os algoritmos sdo executados de forma alternada
(como se pode verificar no cédigo-fonte disponivel).

4.5. Distribuicdo Gaussiana

Os tempos de ordenacdo de vetores contendo itens
com distribui¢do gaussiana sdo dados na Figura 23. Neste
cendrio, o nimero de colisdes esperadas ¢ alto e hd mui-
tos itens repetidos nos vetores (observe na Figura 18-d
que os itens com maior probabilidade de escolha estdo
concentrados num subintervalo muito estreito de [0..1]).

8

T T
quicksort —a&—
7t flashsort —6—
intersort —v—

1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9],
itens (x 10°)

Figura 23 — Itens com distribuicio gaussiana.

Como o numero colisdes € alto, Intersort poderia
gastar muito mais memoria que Flashsort; porém, como
ha muitos itens repetidos nas listas de colisdes, assim que
eles ficam todos iguais, o Intersort pode interromper as
chamadas recursivas. Consequentemente, o consumo de
memoria do Intersort ndo chega a ser tdo grande e, além
disso, seu consumo de tempo € muito pequeno. De fato,
mesmo com um niimero alto de colisdes, entre os quatro
cendrios considerados, este foi o melhor para o Intersort.

5. Conclusoes

Os algoritmos de ordenagdo de vetores descritos na
literatura sdo classificados como algoritmos baseados em
compara¢do ou algoritmos baseados em mapeamento,
dependendo de qual € a principal operag@o usada por eles
para ordenar os itens de um vetor. Aqueles algoritmos
baseados em comparagdo de itens sdo mais flexiveis,
podendo ser usados para ordenar vetores com itens de
qualquer tipo para o qual seja possivel definir uma rela-
¢do de ordem como, por exemplo, string; porém, o con-
sumo de tempo minimo destes algoritmos é Q(nlgn) . Por
outro lado, aqueles algoritmos baseados em mapeamento
de itens s3o mais eficientes, com consumo de tempo mi-
nimo Q(n) ; porém, esses algoritmos sdo limitados a orde-
nar apenas vetores cujos itens sejam de tipo numérico.

Entre os algoritmos de ordenacdo baseada em compa-
racdo, o Quicksort é considerado um dos mais eficientes,
com complexidade de tempo esperada O(n g n) . Por outro
lado, entre os algoritmos de ordenagdo baseada em ma-
peamento, Flashsort é considerado um dos mais eficien-
tes, com complexidade de tempo esperada O(n) . Porém,
de fato, Flashsort € um algoritmo hibrido, pois ordena
vetores usando tanto mapeamento quanto comparagao.
Assim, o principal objetivo deste artigo foi investigar se
um algoritmo baseado unicamente em mapeamento, feito
por interpolagdo linear, poderia ser uma alternativa mais
eficiente para a ordenag@o de vetores numéricos.

Para verificar essa hip6tese, mostramos como imple-
mentar em Python um algoritmo de ordenagdo baseada
em mapeamento por interpolacao linear, que denomina-
mos Intersort. Além deste algoritmo, também implemen-
tamos os algoritmos Quicksort, Flashsort, e uma série de
algoritmos para geragdo de vetores contendo nimeros
inteiros aleatérios, de acordo com diversas distribui¢des
de probabilidade. Em todos os experimentos comparati-
vos realizados, o Intersort foi o algoritmo mais eficiente
em todos os cendrios considerados (pelo menos com rela-
¢do ao consumo de tempo, ja que o consumo de memdoria
nao foi efetivamente medido nos experimentos).

Um fato importante que devemos ressaltar é que, nos
cendrios avaliados nos experimentos, nao usamos vetores
contendo sequéncias de itens com amplificacdo fatorial
aproximada, o que faria Intersort consumir tempo O(nz) .
Tomamos essa decisdo pela impossibilidade de gerar
sequéncias desse tipo com 10° itens (pois a taxa de cres-
cimento da funcdo fatorial torna impossivel representar
valores tao grandes na memoria do computador). Apesar
disso, também ressaltamos que os vetores de inteiros
aleatdrios usados nos experimentos simulam dados que
normalmente sdo encontrados em situagdes praticas de
ordenagdo e que, portanto, o algoritmo Intersort pode ser
uma alternativa vidvel e eficiente para uso pratico.

Referéncias Bibliogrdficas

[1] T. H. Cormen et al. Introduction to Algorithms, 3™
Edition, MIT Press, Cambridge, 2010.

[2] D. Knuth. The Art of Computer Programming,
Volume 3: Sorting and Searching, 3™ Edition.
Addison-Wesley,1997. Section 5.2.1: Sorting by
Insertion, pp. 80-105.B.

[3] C. A. R. Hoare. Quicksort. The Computer Journal,
vol. 5, Issue 1, p. 10-16, 1962.

[4] K. D. Neubert. The FlashSort Algorithm. Proceed-
ings of the euroFORTH'97, Oxford, England, 1997.

[5] S. S. Sastry. Introductory Methods of Numerical
Analysis, 5t Edition, PHI Learning Private Limited,
New Delhi, 2012.

[6] I. Miiller et al. Cache-Efficient Aggregation: Hash-
ing is Sorting, MIT, 2019.

[71D. Beazley; B. K. Jones. Python Cookbook,
O’Reilly, USA, 2013.

